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ON THE USE OF LAGRANGE MULTIPLIERS 
IN DOMAIN DECOMPOSITION 

FOR SOLVING ELLIPTIC PROBLEMS 

HOWARD SWANN 

ABSTRACT. The primal hybrid method for solving second-order elliptic equa- 
tions is extended from finite element approximations to general bases. Varia- 
tional techniques are used to show convergence of approximations to the so- 
lution of the homogeneous Dirichlet problem for selfadjoint equations. Error 
estimates are obtained and examples are given. 

INTRODUCTION 

Lagrange multipliers have been employed to define classes of functions used 
to approximate solutions of elliptic partial differential equations in a number of 
ways. Greenstadt has described the cell discretization method, where the domain 
of a problem is partitioned into cells; approximations are made on each cell, and 
the approximations are forced to be weakly continuous across the boundaries 
of each cell by using Lagrange multipliers in a method called moment colloca- 
tion [5, 6, 13-16]. These results are discussed in ?4. Babuska has shown how 
Lagrange multipliers can be used to make finite element approximations match 
the boundary data in elliptic problems [1] (see also [4]). Dorr [9] has applied 
the methods of Babuska to force continuity across an internal interface formed 
by dividing a domain in R2 into two parts, using a finite element basis. The 
primal hybrid finite element method of Raviart and Thomas [18] shows how 
Lagrange multipliers can be used to ensure that nonconforming finite element 
approximations converge to solutions as the size of the mesh of the finite el- 
ement grid becomes small. We show here that convergence of the Greenstadt 
method occurs in quite general situations. The cells do not diminish in size. 
The only requirement for convergence is that the basis functions on each cell 
constitute a Schauder basis in an appropriate space and that the weight func- 
tions defined on the boundary segments of each cell that are used to enforce 
moment collocation also be a Schauder basis. The algorithm is naturally suited 
for parallel computational methods. 
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In ? 1 we describe the setting for the problem and state some preliminary re- 
sults. The main convergence result for strongly elliptic second-order selfadjoint 
problems is stated and proved in ?2, and error estimates are given. We describe 
parallel methods for obtaining an approximation to the solution in ?3. The 
preliminary results stated in ?1 are proved in this section. Section 4 describes 
an implementation of the algorithm using polynomial bases for approximations 
in domains in R2 . This example strongly resembles the p-version of the finite 
element method (see [2, 3, 8]). Two examples are given and comparisons are 
made with ELLPACK's Hermite collocation finite element method [ 19]. Results 
obtained by others using the algorithm are discussed. 

1. DESCRIPTION OF THE PROBLEM AND PRELIMINARY RESULTS 

The task is to approximate the solution of an elliptic selfadjoint problem of 
the form 
(1.la) Eu= f 
over a suitable domain Q in RK (described below) with boundary F. If Di 
denotes partial differentiation with respect to xi, the operator E is expressed 
as 

K 

Eu = - E Di(Aij(x)Dju) + Ao(x)u. 
i,j 

We consider the homogeneous Dirichlet boundary condition expressed as 
(1.lb) ulr = . 

The weak formulation of the problem is the following: 
Let Ho (Q) be the subspace of functions in HI (Q) equal to zero on F. 

Define 
K 

a(u, v) = Z Aij(x)DiuDjv + Ao(x)uv dx. 
Qi,j 

Find u E Ho (Q) such that 
(1.2) a(u, v) =(f,v) 
for all v E Ho (Q), where (, *) denotes the L2 inner product over Q . 

We consider domains that have the following properties: 
Definition 1.1. A domain Q c RK has a boundary F that is Lipschitz and 
piecewise Cl, denoted LPC1, if it satisfies the following: 

(i) Q is open, bounded, and connected; 
(ii) Q is the interior of its closure; 
(iii) F is Lipschitz, i.e., for any x E F, there exists a neighborhood V of x 

in RK and new orthogonal coordinates (Yi , Y2, ... , YK) such that 
(a) V={(y, ...,YK): -ai<yi<ai, 1<i<K}; 
(b) There exists a uniformly Lipschitz-continuous function g defined in 

VI - (Y1,*- YK-1): -ai< Yi <ai, 1< i< K -1} 

such that Ig(y1)j < IaK for any yi E VI , and 

QnnV={y=(Y1,YK) E V:YK < g(Y1)}, 

Fn V = {Y = (yl, YK) E V: YK = g(yI)} 
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(iv) F=-u **uVpu ,where 

(a) a? is a relatively open subset of F and a simply-connected compact 
subset of a Cl (K - l)-manifold, and 

(b) _9 is a compact set contained in a finite union of (K - 2)-manifolds 
and n flVc if i$&j. 

This definition is that of Grisvard [17] for Lipschitz boundaries and follows 
Fleming [11] for the definition of piecewise Cl . 

Let Q be an LPC1 domain. The Hilbert spaces we use are the following: Let 
(, *) denote the L2(Q) inner product, with norm denoted I* Ilo . H1 (Q) = 
{u: Q -* R: u E L2(Q); D1u E L2(Q) for i = 1, ..., K}, where partial 
derivatives Diu are distribution derivatives with respect to xi. The space 
H1 (Q) has inner product 

K 

(u, v)1, = Z(Diu, Div) + (u, v). 
i=1 

The norm on HI(Q) is denoted II' IIIQ. Ho(Q) is the closure of Co(Q) in 
thenorm II H1,Q. 

Following Greenstadt's cell discretization method, we allow the domain Q to 
be partitioned in any way into N LPC1 domains Qi, .. ., QN, with QinQj = 

0 if i $4 j and Q = Uji= Qi. The Qi are called cells. 
Let Qo _ RK\Q . Let ( , *) l, i denote the HI (Qi) inner product on the cell 

Qi; the norm is denoted by 11 * 111,i. The L2(QA) inner product is denoted 
(., .); the norm is denoted by *o,i . 

The parent space for much of our discussion is 

H--={IUE L2(Q): Ulo, EH'(0i); i = 1, .,NJ. 

The Hilbert space H has inner product 
N 

(U, V)H- (U, )V),i 
i=1 

The H-norm is denoted by 11 IIH. 
Let Fij = Qi n Qj. Assume that Fij is the finite union of Vq, where 

the {5 q} have the properties of Definition 1.1 (iv). Where no Vq exist, Fij 
is ignored. To simplify notation, we refer to such Vq as Fij, acknowledging 
that there may be multiplicity involved. Fio is a boundary segment between 
Qi and Q0. The inner product for L2(Fij) is denoted by ( j, .), with norm 
represented as || * II ij - 

We denote by yij the trace operator restricting u u to its values on Fij. 
From [17, p. 41] we can take yij to be a bounded linear operator from HI (Qi) 
to L2(Fij); there are constants C1j such that for any w e H, 1yij (w)IIij < 

CjjIwII ,j . Since we are concerned with estimates in terms of Ilyij(w)IIij rather 
than the H 1/2(Fij) norm of yij(w) required by full use of the trace theorem 
[17, p. 37], constants Cij can be explicitly obtained for many Qi [20]. 

For each Fij, choose I _coqJ}I?"O to be functions in H1/2(F11) that are a 
Schauder basis for L2(Fij). For any g e L2(Fij), there are some coefficients 
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dk such that g = Zk=l dkw4. For any n, let IT,J(g) _ k=n+l dkw(t) . For 
any e > 0, there is some N(g, e) such that n > N(g, e) n HSij(g)IIii < . 

Approximations are in H; weak continuity across interfaces Fij is enforced 
by Greenstadt's method called moment collocation. 

For u E H, we define the qth moment of u on Fij to be 

Mq'j (U)-(Yi j (U),5 CDqJ ) i j 

We require that the moments of an approximation u be equal on interfaces 
Fij in the following way. 

Let N1 be the number of interfaces Fij. [n] denotes a multi-index, an N1- 
vector of nonnegative integers (..., nij, ...). A partial order is [n'] > [n] if 
and only if for any ij, n' > n,j. We say that [nk] __ [oo] if [nk] < [nk+l] 
and inf{nkj} 0oo as k -oo. 

Set G[nI {u E H: for any ij, ij = 1, ..., N, j $& 0, and for any 
q < n,j, wehave MqJ(u) = M"J(u)}. In this case, [n] is the multi-index 
described above, with all nio = 0, where the nio refer to the Fio. Thus, 
G[n] is the set of functions u in H such that on any internal interface Fij, 
yij(u) - yji(u) is L2(Fij)-orthogonal to Cak, k = 1,..., nij. This gives a 
notion of weak continuity across interfaces called moment collocation. 

Define Go[n] = {u E G[n]: for any i and any k < nio, Mki(U) = 0}. 
Thus, Go[n] is the set of functions in G[n] that are weakly 0 on the external 
interfaces Fio making up F; our approximations of solutions for problems with 
homogeneous boundary conditions are in this space. Owing to the continuity 
of the trace operator, Go[n] is a closed subspace of H. We have the inclusions 
[n'] ? [n] =* Go[n'] c Go[n]. 

For each ith cell, choose any Schauder basis {Bk} for HI (Qi) . For any v 
in H1(Qi), there are bk such that bil bkBk = v; let V.m = ZmU1 bkBki 
Let @m',(v) denote the orthogonal projection (in the H1 (Qi) inner product) of 
v onto the HI (Qi)-orthogonal complement of the span of {Bi, 5B2i . Bi . 
Thus5 dm (v.,m) =?, dm(v) = mi(v -v., m)5and 

00 

k=m+1 1,i 

We have 
mlim Il@mi (V ) ||I1, i = ? . 

These properties of m are independent of [n]. 
Let [m] be an N-dimensional multi-index indicating the number of basis 

functions used in the approximation on each cell; we employ the same notational 
conventions as those used for the multi-index [n]. 

H[m] is the subspace of H such that for any v E H[m], v IQI is in the span 
Of {Bi 5 Bi,** Bm}- 

Given [m] and any function v in H, 5@[m] (v) is the function in H such 
that i[m] (v) IQI = 4m, (v Ql ) . Thus, 3[m] ((*) is the projection of H onto H[m]'. 
We have lim[m][c,] lIl[m](V)IIH = 0- 

Let Go[n][m] = {u E Go[n]: uIl' = Emi 1 bkBki} . This is a finite-dimensional 
space; the moment collocation requirements are met by requiring that certain 
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linear equations hold among the bk. It is shown in ?3 that these equations 
are independent if [m] is sufficiently large. Note that if u E Go[n][m], then 
6@[m](u) = 0. We have the inclusions 

[m'] > [m] => GO[n][m'] D GO[n][m]. 
The result showing that members of Go[n] are approximated by elements in 

Go[n][m] is the following: 

Lemma 1.2. If _9m4(.) is the orthogonal projection operator of Go[n] onto 
Go[n][m], then there exists a constant K1 depending on [n], the choice of cells, 
the choice of basis functions, and the choice of moment collocation weight func- 
tion such that, for any v E Go[n], 

llV -Yimn(V )||H < K1 II1[m1 (V )IIH . 
This lemma is proved in ?3. The dependence of K1 on [n] is discussed there 

as well. 
The following diagram shows the projections and the relations among these 

spaces: 
@[m1 

H =H[m] (D H[m]' 
I I 

Go[n] = Go[n][m] (D Go[n][m]' 

yDn 

Ho' (Q) 

2. STATEMENT OF THE THEOREM AND PROOF OF CONVERGENCE 

Our estimates require that a unique solution to ( 1. la) exist that is in Ho (Q). 
Sufficient conditions for this requirement are the following [17, p. 124]: 

(2.1) We assume that F is Cl, with Lipschitz derivatives. 
(2.2) We assume that Aij(x) E H1(Q) with DkAij(x) E Loo(Q), and that 

the Aij(x) are Lipschitz continuous on Q and Ao(x) E Loo(Q). We assume 
that there exists c > 0 such that EZKAij (x)zizj > CZEK I z2 in Q for any 
Zi E R, and that Ao(x) > c a.e. for x E Q and Aij(x) = Aji(x). 

(2.3) We assume that f E L2(Q) E 
Let M' = max{HJAijJJL,o, JAAoJLOJ}. For u, v E H1(Qk), we define 

a(u, V)k = i Aj (A (x)DiuDjv +Ao(x)uv) dx. 

We let a(u, v) represent EN a(u, V)k. We have the inequality 

N K 

Ja(u, v)| ? M'E EI [ Dullo,kllDjvO,k + IIUIIO,kIIVIIO,k 
k=l Li, j 

< M'KIIUH|HIIV IIH 
Let M = M'K. Note that a(., *) is coercive, for 

N [K dx l 
a(v, v) >c I](D2V) dx?] v2 dx =CIIV 112 

j=1 _= 
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Let D.i u be the "conormal derivative with respect to E of u on Fij". This 
is defined for sufficiently smooth u as follows: If n = (ni, n2, ... , nK) is the 
unit normal to Fjj (pointing outward relative to the interior of Q1), then 

K 

Dn,j u _ 2)jj(ApqDqu)fnp. 
p,q 

Green's formula (Eu, v) = a (u, v )-(Dn u, y (v)) is valid for LP C I domains 
for u in H2 and v in HI if the A ij are sufficiently smooth [17]; in particular, 
this holds with our assumptions concerning the Aij and for Q and all Qj. 

Denote the solution in H02(Q) to (1.la) and (1.lb) by u. Then Eu = 

Dni,u is in L2(Fij), and u E Go[n]. 
A variational argument shows that a unique function un, m exists in Go[n][m] 

that minimizes a(u, u) - 2(f, u) over all u e Go[n][m], and 

a(un,m, v) = (f, v) for all v in Go[n][m]. 

The function un, m is obtained by solving a system of linear equations. The 
matrix describing the system is nonsingular if [m] is sufficiently large; details 
are in ?3. 

We prove the following theorem. 

Theorem. Assume that (2.1)-(2.3) hold and that u is the solution in Ho(Q) to 
(I. la) and (I. lb). Let (nf ) be the largest number offaces Fij of any cell. Then 

cllu - Un, mIlH < (nf)vfNsup{Cij}sup{IIJjS',(Dnl1j u)jIj} + MK1 jjdi[mk(u)IIH. 

Thus, [n] is to be chosen so that the error estimated by the first term is 
acceptable. Lemma 1.2 shows that the error expressed by the second term is 
small if [m] is made sufficiently large. 

Proof. Since u-un, m e Go[n] and 93m (u)-Un, m (u -Un, m) E Go[n][m], 
we have 

cllu - Un,mII1 < a(u - Un,m, U - Un,m) 

= a(u-Un,m, u-Ymn(u) +3mn(u)-Un,m) 
= a(u-un,m, u- Ymn(u)) + a(u-un,m, 3 mn(u) )-Un,m) 
= a(u -Un, m, U - Ymn(u)) + a(u, Dmn(u) - Un, m) -a(un mDmn(u) - Un, m) 

= a(u u-Un , m, U - mn (U) ) + a (u, Dmn (u )- Un m )- (f Y9mn (u )- Un, m ) - 

Let s = mn(u)-Un,m; thus, a(u, Ymn(u)-Un,m) = a(u, 3) . Using Green's 
formula, we have 

N N / 
a(u, 3) = Za(u, )j = ((Eu, )j + Z(Dn,u,Yi))ij 

i=1 i=1 I 
N ( 3 

=E |(f , 6)i + (Dn,j U, Yij (5)) ij| 
i=I 

= (f ) + ; (E (Dn,y u XYiX (05) ) ij 
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Using the fact that if the boundary segment is an internal interface, D.,j u = 
-Dn,iu and yij (u) = yji(u), and grouping the sum of the boundary integrals 
above in pairs (if the boundary segment is an internal interface), we obtain 

N 

(Dnlij U Yij (05)) ij 

- Z(DnJu Yij2(6) - Yji (6))ij + Z(Dn10u , Yio( ))io - 
rnj rlo 

The first sum in the expression above is taken over j 54 0 and we assume 
that i < j. 

There exist dk such that Dni,u = Z,1 dka4'j. Suppose that nij moment 
collocations are enforced on Fij. Then yij(3) - yji(3) is orthogonal to the 
weight functions w-)"j, k = 1,. .. nij, so 

00 00~~~~~0 (Dn=u Zdk(w) -Yji ( )())- () = Zdk j 
Yij(w) Yji(0() - 

=E|dk ( O)Jij Yij (05 )Yji (0 ) ) ii E dk ( 6 
ij , Yij 0) )-Yji (0 ) )j 

k=i k=nij+l 

( KkE3+ dkw6!, Y (3 ) - )ii(3) ) = I (< (Dn3 u), 2j(3 )-Yi i - ) ) 
k=n? + I i j 

< Jj9nij (Dn,jU) 11ij 1]YijW ;- Yji(W; 1ij 

<5 119,j(Dn,,U)IIij(IIYij(I5)IIij + ||Yji(W)lii) - 

By the trace theorem, using the constants Cij, this last expression is ma- 
jorized by lllnIj:(Dni,u)||ij (cjilI 1 1,j + CiA1 1,i) - 

Similarly, with nio moment collocations enforced on Fio, the trace yio(6) 
is orthogonal to the weight functions o40, k = 1i ... . nio SO 

(Dnio u 5 Yio (6)) jo < lXI Ig-o (Dnio u) I|| iO I11 Yio (o) 11 io 

< Jj9-iO?(Dnjo U) 11iOCiOIAoS1I, i - 

Hence, using the estimates above, with [n] moment collocations enforced, 
we get 

CIIu - Un,mllH 

< a (u u-Un , m U,-9mn (U) ) + a (u u, 9mn (u )- Un m )- (f 5 Dmn (u )- Un, m ) 

= a (u -Un, m,u U-O'mn(u)) + a (u , 6)-(f, 6) 

N/\ 
= a (u - Un, m 5U --9@mn ) + (f, 5) + E E ,(Dnij u Yij (0)) ij 

- -(f 5 0) 
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Now 

a(u - Un,m, U -39 (U)) < M U - Un,,m IIH 11 u-39D (U) IIH, 

and 

N( 

((Dn,, 
u , 

Yij (5) ) ij) 

? I IL9tJj9(Dnlju)11ij(CijII3H111,j + CA4II111,i) 
rnj 

+ gI II9'o5(Dniou)IIio CioI 1 I i 
rlo 

< sup{Ci1}sup{llgn1ij(Dnl,u)lli}} (Z(HIIiI,i + II11i,i) + 1I I31wi) 

rlJ Flo 

N 

-< suPfCOySUPf 119liJj(DnlJ u)jjjjj}(nf) 11|5111, i 
i=l1 

< sup{Cij }sup{ IS, I (D nl u)jjjj}(nf)V 'N7J131H 

We have used the fact that any 116111,i will occur at most (nf) times in the 
sums over the Fij . Note that 

113 11H = I9mn(u - Un,m)IIH < IIU - Un,mIIH. 

Assembling these estimates, we get 

cllu - Un m 112 < a(u-Un,m, u-mnu) + N (z(Dn,u Yij(5))ij) 

< MIu - Un, m IIHIIU -mn(U)IIH 
+ sup{Ci}}sup{ llgi8(Dn,, u)llij}(nf)vW3lllH 

< MIU - Un, m IIH 11 u-9mn (U) IIH 

+ sup{Cij}sup{IJjIS-(Dnlju)jIjj}(nf)VWju - Un,mIIH n 

Dividing both sides of the inequality by II u - Un, m IIH, we get 

CIIu - Un, m ? < MIu -9mn(u)IIH + Sup{Ci1}sup{IISUPgn(Dn,u U) IIij}(nf)VrN. 

Since Ilu -9mn(u)IIH < KjjjI1[mI(u)IIH, we obtain our estimate. El 

If we make [n] sufficiently large, sup{IIj9n-7j(Dn3,u)jjjj} is less than any e > 0 
in view of the properties of JZ,j(.) . To estimate IIjjn(Dn,,u)jIIj, we consider 
how well we can approximate Dnl u in the L2 (Fij) norm by linear combinations 
of 0a4kJ k = 1, ..., nij. With an appropriate choice of cells, three or four 
moment collocations on each interface have usually been sufficient to obtain 
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reasonable accuracy, assuming that the basis for the approximations on the 
cells and the functions used to enforce moment collocation are suitably chosen 
(see ?4). 

Since, by Lemma 1.2, Ilu -9 n(u)IIH -4 0 as [m] - [oo], convergence of 
Un,,m to u is established. 

The expression IIu - n (u)IIH is majorized by KI IKl[,n(u)II H . This partially 
decouples the problem of estimating errors in this term from concern with the 
moment collocation constraints. The definition of l[,m (*) is independent of 
moment collocations [n], so to estimate jj$[mi(u) IH, we need only consider 
how well we can approximate u in the HI norm by the chosen basis on any 
cell. Estimates of both errors in terms of [n] and [m] depend on the mode of 
convergence of the bases chosen for the cells and the interfaces Fij . If the basis 
is a polynomial basis, we would expect that the error estimates would be in terms 
of the degree of polynomial approximation reflected in [m] and the regularity of 
u. The methods used to study the p-version of finite element approximations 
are relevant here (see [2, 3, 8]). We give some examples showing the error in 
approximations for various values of [m] and [n] in ?4, where polynomials 
provide both the cell bases and the moment collocation weight functions. 

The parameter K1, described in more detail in ?3, is dependent on the mo- 
ment collocation constraints (but not on [m]). 

Dorr [9] has obtained some convergence results for finite element bases in 
domains in R2 . Thus, if finite elernent solutions have been obtained on two 
domains, the domains can be "glued together" using this method. This may be 
of use in elasticity problems (see [20]). 

3. METHODS FOR OBTAINING THE APPROXIMATION AND PROOFS 

OF THE PRELIMINARY RESULTS 

In this section we describe the system of linear equations that generate the 
approximation in more detail, show that there exists a unique solution, and 
suggest a parallel algorithm for solving the system. We prove Lemma 1.2. 

We wish to obtain the function u in Go[n][m] that minimizes 

a(u, u) - 2(f, u) 

over all u E Go[n][m]. 
On each cell Ok, we use any Schauder basis {Bf (x)} and form an approxi- 

mation 
mk 

UIQk = E bfrBfr(x). 
1=1 

Then 

N 

a(u, u) - 2(f, u) = E [a(u, U)k - 2(f, U)k] 

k=I 

N [1mk mk mk 

S IZE bk EZ bka(Bfk, Bj)k -2 bfk(f Bk)k 
k=1 Li=' j=1 i=] 
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This quadratic form is to be minimized subject to the moment collocation 
constraints. This is done by adding terms of form 

-AqJ(yij(U), 0JqJ)ij - (Yji(u), onJ)ij) q=1,.. nij, 

and 

-AqN(YiO(U), ()q?)iO) q = 15 ...-, niO, 

to the quadratic form for each interface Fij, where -4q is a Lagrange multi- 
plier. This converts the problem to that of finding the unconstrained minimum 
of a function F(b, A), which produces a system of linear equations of form 

(C 0 MT) ( 0 f 

We have assumed that the elliptic equation is of Helmholtz type, with Ao > 
0. In this case, the matrix C consists of symmetric positive definite blocks 
along the diagonal and is zero elsewhere; each block corresponds to a cell and 
the number of basis functions used on the cell gives the block's size. The vector 
b contains the coefficients to be used with the basis functions to obtain the 
approximation, and f represents entries corresponding to the right-hand side 
of the elliptic equation Eu = f. The rectangular matrix M, which we call 
the matrix of moment collocation rows, consists of a band of blocks, with zeros 
below the band; it is sparse above the band. We show below that the rows of M 
are independent if the total number of basis functions used in the approxima- 
tion is sufficiently large. The vector A represents the Lagrange multipliers A2q 
used to enforce the linear moment collocation requirements expressed here as 
Mb = 0. As in [18], we expect A to represent an approximation to the normal 
derivative of the solution along the interfaces; D.1j u should be approximated 
by Zi? i4{w/. This is discussed in [20] and at the end of this section. 

The computations required to generate M, f, and the diagonal blocks com- 
prising C are independent, inviting the utilization of parallel processors. In our 
implementation of the algorithm described in ?4, the entries for the blocks of C 
are computed in parallel on a Sequent Symmetry machine. This is particularly 
appropriate if a cell has a curved boundary segment, for quadrature over such 
cells can be time-consuming (see ?4). 

The following block-elimination algorithm provides a parallel direct method 
for solution of the linear system. 

Since C is a matrix of positive definite diagonal blocks, parallel computa- 
tions can obtain the Cholesky decomposition for each block, which allows us to 
represent C by LL , where L is lower triangular. 

We can then proceed as follows: 
We wish to solve Cb - MTA = f; Mb = 0. 

1. Find Y such that CY = MT (so Y C-IMT). 

2. Solve Cy = f (so y =C-f). 

3. Solve [MY]A = -My (= -MC1f) 

4. Compute b = y + YA (so b = C-1f + C-lMT,). 
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Then the pair (b, A) is our solution: 
The definition of b in step 4 gives Cb - MTA - f, and 

Mb = MC-If + MC-IMTA = MC-1f + MYA = MC-f- _ MC-If = 0. 

Because of the structure of C, steps 1 and 2 can be done in parallel without 
actually assembling the matrix C. The matrix MY = MC-1MT is positive 
definite, of relatively small size equal to the number of rows of M. This estab- 
lishes the existence of a unique solution. Since the moment collocation tech- 
nique deals with the problem of matching approximations across interfaces, 
we can concentrate on finding basis functions that make the blocks of C well 
conditioned (see ?4). 

This method for solving the system of equations fails when we approximate 
solutions to Poisson's equation -Au = f, where Ao = 0, since the blocks of 
C are then only positive semidefinite. However, it is shown in [20] that the 
Laplace operator is coercive over Go[n] if, for each interface Fij, at least one 
of the t)4' satisfies (at'J, 1)ij 54 0. In this case, although C is singular, a unique 
solution to the entire system of equations exists, owing to the presence of M 
and MT. The estimates in ?2 that establish convergence of the approximations 
hold for Poisson's equation. 

We can adapt the block-elimination algorithm with iterative refinement for 
bordered linear systems of Govaerts and Pryce [12] to obtain a solution of the 
linear system when C is only positive semidefinite. This method allows us to 
use a nonsingular matrix close to C and obtain approximations to a solution 
using iterations employing the algorithm described above. Experiments suggest 
that good results are obtained with very few iterations [20]. We need only do 
steps 2, 3, and 4 above for each iteration; if we provide a Cholesky decom- 
position for the matrix MY, such iterations are easily computed. Greenstadt 
has described a way to decouple the system so that each cell is treated inde- 
pendently, and the computations can be done in parallel [14]; this method is 
valid for Poisson's equation. Iterative techniques are appropriate for problems 
requiring large numbers of cells; in ?4 we discuss an example [15] where the 
generalized conjugate gradient method [7] was used. 

The arguments above require independence of the rows of M. To show that 
this occurs for sufficiently large [m], we consider a representative cell, say Q, 
and C1 faces F12 and F13. Denote the Schauder basis for HI(Q1) by {Bn}. 
Inner products (', *) 12 and (', *) 13 are both denoted (., *); identification is 
carried by the subscript 1 i on y2Ii or the superscript on cowj. 

We assume that Schauder bases {cwli} for L2(Fli) are in H1/2(rlF). In 
this paper this assumption is only used to establish that the rows of M are 
independent. It means that we can use the full force of the trace theorem [17, 
p. 37], so that for any finite linear combination g of the {w/kJ} there is some 
v in HI(Qi) such that yij (v) = g. 

Without loss of generality, we assume that oij' = 1 for all p < n1I, 
i=2, 3. 

By C we denote a constant such that, for any u E HI (Q1), 
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For any m, the segments of the collocation rows relevant to Q1 are 

((Y22(BI), l12), (YI2(B2), Ow12) ... X (Yi2(Bm), w12)) 

((YI2(BI), at)42), (YI2(B2), at)42) , (Yi2(Bm), a4I2)) 

((Y&2(BI), In2), (YI2(B2), WI2) , * , (Yi2(Bm), l 2)) 

((Y (B ), (o'3) (Y 3 (B2) , (t13), ..,(YI3(Bm), (013)) 

((YI3(Bl ), (o'3) , (Y 3 (B2) , 0)23) X** (YI3(Bm), X aI3)) 

( (Y 3 (B1 ) (o)1 3 (Y 3 (B2 ), (t 3)1*--1(Y 3 (Bm) t) , oj33 

We first show that any of these rows is not 0 if m is sufficiently large. 

Lemma 3.1. For any row, there is some m such that the row is not 0. 

Proof. Take row 

((Y (BI) () ,12) (YI0(2), (t)12),., (YI2(Bm) , (O12)) 

as a representative row. By the trace theorem there is some u E H'(Q1), 
u $0, such that Y2'2(u) = )12. Since {Bj} is a Schauder basis for HI(QI), 
there exists some m and bj E R such that 11 EmLI bjBj - ull I, I < 1 /C. 

First, note that 

K(1 (?bBu)~ W) ( = Kby2B)2 W1) 
m m~~~~~~~ 

= Z b1(2',2(B1), c,2) - (W2, w12) = Z b1(2',2(B1), wl2)-11 
j=1 j=1 

On the other hand, 

Y12 (?bjBj-u) 
1 

? 2 < 2 (fbjBj-u) 111211 12 

m 
<C ZbjBj-u *1 < C(1/C) = 1. 

j=1 11l 

Thus, i >Jl b1(2'2(B1), w12) - 11 < 1, So Em I bj(y,2(Bj), 012) 54 0, and 
the result follows. 51 

Assume that m has been taken large enough so that none of the rows is 0. 

Lemma 3.2. The integer m can be made large enough so that for any F,i, the 
rows corresponding to moment collocation on Fli are independent. 

Proof. We take F12 as a representative for our argument and let n = n12. 
Suppose that for any m, the n rows are dependent. Then, for each m, there 
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exist am, j, j = 1, ... , n, not all zero, such that 
n 

0 = Eam,j((Yi2(Bi), wj2) (Y 2(B2), w)j2), ..., (Yi2(Bm), w)12)) 
j=1 

Let Wm =JEn am,jCO32. This cannot be 0, for we assume that {cj2} is a 
Schauder basis for L2(F12). 

By linearity, 
0 = ((Y22(B1), Wm), (YI2(B2), Wm), . , (Yi2(Bm), Wm)). 

Thus, wm is orthogonal to the span of 

{2Y12(BI), Y12(B2), ... Y2(Bm) 
We can assume that II Wm 11 12 = 1. Hence, {wm } is a bounded set in the finite- 

dimensional span of {a42: p = 1, ..., n}. Hence, there is some subsequence 
Wmi and some z in this span such that Wm, -? z in the L2(F12) norm. Choose M such that i > M implies IIwmi - z1112 < 1/2. By the trace theorem there 
is some u E HI (Q 1), u $A 0, such that Y212(U) = z. Since {Bj} is a Schauder 
basis for HI (Q1), there exists some ms, with i > M, and bj E R such that 

ZbjBj-u u < 1/(2C). 
j=111 

Then, using these bj, we get 

EbjY12(Bj) - Wmi < E bjY22(Bj) - Y12(U) + 11|Y12(U) - Wm,i 1112 j=1 1 2 j=1 1 2 

= 'Y12 (? bjBj) -Y1 21(U) + lz - Wi 1I112 

<C ZbBj-u + 1/2 < C(1/(2C)) + 1/2 1 
j=11, 

On the other hand, 
2 

Z; bjY12 (Bj) - Wmin 
~j=1 12 

m, m, 
- KE bjY2(Bj) -Wm, E bjY2(Bj)- Wm) 

j=1 j=l 

2 2 

- ; bjY2(Bj) + llwm 12 - ; bj1Y2 (Bj) + 1 
j=1 12 j=1 12 

since Z7:1 bjY12(Bj) is orthogonal to Wmi. This last result shows that 

E bjY12(Bj) -Wm,in 
j=1 12 
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is an expression greater than or equal to 1, yet the preceding estimate showed 
it to be less than 1, which gives the desired contradiction. El 

Assume that m has been taken large enough so that all rows that represent 
moment collocation for a single boundary face F,i are independent. 

Lemma 3.3. The integer m can be taken large enough so that the rows corre- 
sponding to moment collocation with F12 and F13 are all independent. 
Proof. We show that m can be taken large enough so that the first collocation 
row for F13 and the collocation rows for F12 comprise a linearly independent 
set. The process can then be iterated to obtain the proof. 

Suppose the result is false for all m . Then, for any m, there exist am, j, 
j =1, ..., n, not all zero, such that 

((YI3(BI), Ct)13) , (Y13(B2), Ct) , *3 . , (Yi3(Bm) 5 ,t)1 )) 

n 

-Zam,j((Yi2(Bi) ,t)12) (YI2(B2), t12) * , (Yi2(Bm) wj12)) 
j=1 

Now, assuming that m is large enough so that the collocation rows for F12 
are independent, we argue that the am, j must be independent of m. If this 
were not the case, there would be some m with the properties above and m' > 
m such that 

((YI3(BI), w5 ), (t3 Y3(B2), C13), ... , (Yi3(Bmi) , (t13)) 

n 
- , aml,j((YI2(BI), wt'2) (Y12(B2), C(t)2), ... , (Yi2(Bmi), wj2)). 

j=1 

This dependency relationship will hold for the first m components of the 
vectors above. Then 

n 

Z am,j((yQ2(BI) , w12)) (2Y'2(B2), Oj2), *.. , (Y12(Bm), wJ 2)) 
j=1 

n 

- aml,j((y2 (B1) , 12) (Y12 (B2), Y12)* 2 (Yl(Bm), X52)). 
j=1 

Thus 
n 

Z(am,j -am',1j)((Y12(B1), taA2) (YI2(B2), ()2) .. , (YI2(Bm), ()Y2)) = ?, 
j=1 

which would produce a dependency unless am,j = am , for j = 1, ..., n. 
Let z = -jn am, j c 2 . Then, by linearity, 

((Y'3(BI) (t)3) (Y1 3(B2) , (t) , *3 , (Y13(Bm) , (O13)) 

n 
= Eam,j((y 2(B1) C tA2)) (y12(B2), (t2) ..2 , (Y12(Bm) X Cj2)) 

j=1 

= ((Y12(BI), z), (y12(B2), z) , . (Yi2(Bm), z)) 

for any m. Thus, for any u in the span of {BI, .. , Bm}, 

(y13(U), Ow 13) = (y12(u), Z). 
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We have that wV) $ 0 a.e. is in L2(F13). The assumption that Qi is an 
LPCI domain (so that F13 is Cl) and a partition of unity argument allows us 
to find some open set a in RK with the following properties: 

(a) an rF13 $ and ()13 $ 0 a.e. on a n F13, and 
(b) nF122=0. 

We can find some v in C1 (RK) such that 
(i) v has support in ; 

(ii) v>O;and 
(iii) v > 0 on an open set in Ql and on a relatively open set in an lF13 

and (y13(v), 413) $ 0. 

Thus, I(y3(v), w9113)1 _ d > 0 and (Y12(V), Z) = 0 
Since {By} is a Schauder basis, we can find some m and bj such that 

11 E l bIjBj -vlll, I < d/[C(1 + ||zIl12)]. Let Vm- E I bjBj. So 

(Yl3(Vm) X W13) = (Yl2(Vm) , Z) 

d = I(y3(v)Y, w-) 3) - (y12(V), Z)I 

= Iy13(v), W)3) - (Y13(Vm), XI3) + (Yl2(Vm), Z) - (Y12(V), z)I 

? H2Y'3(V) - Y13(Vm)1112110 31 12 + H2Y12(Vm) - Y12(V)11211ZI12 

< C|v - VmHII,1 * 1 + CIV - VmH ,1 HzH12 

= CIIv - Vm m 1I(1 + ZllH 12) 

m 

= C bjBj-v (1 + HIzHI12) < C{d/[C(l + IIZHI12)]}(1 + IIzH112) = d. 
j=1 1,1 

We have obtained the inequality d < d, the desired contradiction. El 

If there are more than two Cl boundary faces Flj, the argument in Lemma 
3.3 can be continued to show independence of all moment collocation rows for 
the boundary faces for Ql. Finally, since this argument holds for any cell, 
this suffices to show that the entire moment collocation matrix M consists of 
linearly independent rows if [m] is made sufficiently large. 

For efficiency of computation, it is appropriate to choose both Schauder bases 
{Bk} and {wk'J} so that for any choice of [n] moment collocations, [m] does 
not have to be very large to insure that M is to have full rank. An example of 
this is described in ?4. 

A crucial result is that functions in Go[n] can be approximated by functions 
in Go[n][m], which is Lemma 1.2. 

Without loss of generality, we can assume that the Schauder basis {Bk } is 
orthonormal in HI (Qi), since the Gram-Schmidt process could produce such 
a basis from {Bk }, and the projected functions mn (v) satisfying the moment 
collocation constraints such that m(v)IQ, is in the span of {B ,..., BIM} 
are the same whether or not the basis has been made orthonormal using this 
process. 

Thus, for any u E H, we have u Q,= Ek=bkBk, where bk=(u, Bk),i and 

N N ro 

U|H2 = E UI12,i = (bk)2 
i=l zi= Lk=lJ 

Note that aim (u) = Z-m+?l bkBki 



64 HOWARD SWANN 

We prove two representative cases of Lemma 1.2. We first consider the one- 
cell case. 

Lemma 3.4. When there is one cell, denoted Qi, with only one external boundary 
segment 1io, there is a constant K1, depending on the cell structure, the choice 
of bases {Bk} and {oJ4} and [n] such that, for any v E Go[n], 

llv - Yn(v) 11 1, i -< K, Ill@m'(v) 1 1, i . 

Proof. For any v E Go[n], we represent v by EZ I bkBk. Since we assume 
that v E Go[n], we have for wcp? with p = 1, ...,nio that 

00 

0 = (Yio(v), Wl))O = Z bk ( kO(B, ), wp)iO. 

k=l 

Let vm = En bkBk . To obtain the projection 3n (v), we seek w E Go[n][m] 
that minimizes IIv - w112 2. Represent w as a perturbation Vm - e of vm, 

where e = EZmn ekBi . Then 

IIV 
_ W -||i = ii2i=(v) + Vm-(Vm-e)ii2,i = Il@i(v)112 i + 112eii, 

Thus, we must minimize liell = Zkm e12 subject to the requirement that 
Vm - e E Go[n][m], or 

0 = (YiO(vm - e), 'O4)io 
m m 

=Z bk (yio (Bk ), WOP?) io-E ek(yio (Bk), Iwp0) jo forp= 1,..., nio. 
k=i k=l 

So Em l ek(yio(Bk), o)p?)iO = Zm , bi (yio(Bi), o,p0)io must hold. Let ap = 

Zkm=l bk(yio(Bk), ICwp0)jo . We express this in terms of matrices. Let a= (a1,..., 
a0to) and e = (el, ... , em). The matrix M denotes the nio x m array with rows 
mp _= ((yio(Bi), wojP)iO, (yio(Bi), o,)1iO, *i., (yio(Bi ), wOp)io). The require- 
ment is that MeT = aT. We assume that m is sufficiently large so that the rows 
of M are independent. We wish to minimize eeT such that MeT = aT . This is 
a well-known linear programming problem; it has the following solution: A-- 
MMT is symmetric and nonsingular; it is positive definite, since for any x $ 0, 
xAXT = (XM)(XM)T > 0. Let y be the solution of yA = a, so y = aA-1, 
and form z _ y1mn = yM. Note that MzT = M(yM)T = AyT = aT, 
so z is a possible e. First, zzT = yM(yM)T = yAyT = a(aA-')T = aA-aTT 
for A-1 is symmetric. Also, for any e satisfying the necessary requirement, 
zeT = yMeT = yaT = aAl1aT = ZzT, so 

z(e - z)T = 0 = (e - Z)ZT 

With these results we show that the e that minimizes Emi ek2 = eeT subject 
to the necessary condition MeT = aT is z. Now 

eeT = (e - z + z)(e - z + z)T 

= (e - z)(e - z)T + z(e z)T + (e - z)zT + zzT 

= (e-z)(e-Z)T + 0 + 0 + zzT. 
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Thus, the optimal e is z. The minimal value is zzT = aA-laT. Since 
9n (V ) = Em I (bi - ek)Bk, we have 

||V 92> (V) 1 1 i ltm ( ) 1 , i+ le | 1 i = i@ (V ) ||I12 i + ZZT ljv --94m(v)IJ'i = +Jjjemj(v = ji, (v)jel +iz 

= lld (v) 1, i + aA-1aT. 
We argue that this can be made small for sufficiently large m. 
If ,u is the smallest eigenvalue of the positive definite matrix A, then it is 

easily shown that aA- laT < (1 /i)aaT . For any m' > m, the matrix of moment 
collocation rows M', when more basis functions are employed, is formed by 
adjoining a matrix M1 with rows of form 

((yio(Bi +1), c)p)iO, (yio(Bi 2) io)p?i jo * * * . (yio (B i io) - C)p)O 

to M; M' can be presented as (M Ml). Define 

A'= (M M1)(M M1)T = MMT + MlMT. 

Let ,u = infwAwT = wM(wM)T, where the infimum is taken over all w such 
that wwT = 1 . If ,u' is the least eigenvalue for A', with the same assumptions 
about w, then 

,' = infwA/wT = inf(wMMTwT + wM,MTwT) 

= inf(wM(wM)T + wM, (wMM)T) 

> i + inf(wMl (WM,)T) > it. 

Thus, 1/,u' < 1/,. 
We assumed that v E Go[n], so 

00 

0 = (Yio(v), Co)1o = Z bk (io(Bk 0, 

k=l 

Thus, 
m 00 

a = Zbk(yio(Bk) , ')O =j - S bk(yio(Bk) , a0)jo 
k=l k=m+l 

= ( o M,~v), io )iO. =(Yio (@m (V) , (pO i 

Using Schwarz's inequality and the trace theorem, we get 
e ? 

11ioy(@m (V))o11H2 11 1o ? G2 
I(v)12i 

| i 2 

This gives the estimate 

jv -J(v)|2m m- jj@(v)|j1 + aA aT < j@(v)|2 + (1/,t)aa 
nlo 

= @(V)112( i + ((1/,U) S a 
p=l 

nlo 

? I@(V)112, i + (1/i) ZCi2 i (V)ll i| |2 
p=l 

- jj@4 (v)1j12i 1 + 
(11/i)Ci2 IwiOI12 . ? 

< ~~~P=l 
The next case we consider is a domain partitioned into two cells with one 

internal interface. 
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Lemma 3.5. When there are two cells, denoted Ui and Q2, with boundaries 
F10, F12 for Q, and F20 and F21 = F12 for Q2, there is a constant K1, 
independent of the length of the moment collocation rows, that depends only 
on the moment collocation rows (assumed to be independent), constants Cii 
obtained by the trace theorem and the L2(Fio) norms of the first nio, n12, and 
n20 weight functions OP such that for any v in Go[n], with [m]l (MI, M2), 

JIV _ A2Omn(V)H|H < Kllld'[m](V)HIH. 
Proof. For any v E Go[n], we represent vIu, by v i = EZ?=I bkBk for i = 1, 2. 
Since we assume that v E Go[n], for i = 1, 2 and for cp, p i nio 
we have 

00 

0 = (yjo(v ), w,0)iO = M bk(yio(Bk), c0)1io 
k=1 

and, for a)4,2, p = 1, ..., n12, in addition 

0 = (Y22(V1), w12)12 - (Y21(V2) w12)21 
00 00 

Z b(l 2(BY ), 1 2)12 -Z bJ (Y21 (Bj2) 01 2)2 
k=1 j=l 

We express [m] as (MI, M2). Let vm = ZML bkBk . To obtain the projec- 
tion 9mn(v), we seek w E Go[n][m] that minimizes IIv - w1H. 

Represent w as a pair (wI, w2), where, for i = 1, 2, 
m, 

wi = WQ vm, - ei and e'= ekBk. 

k=1 

Then 

IIV - WI = IV_ - wllh + lv2 _W212 

=I@ (V) + vl -(vm -e' )112 1 + |2( + Vm2 (Vm2- e2)11 22 = ll~',(v)+vm -(v e)l,I +IIle2(V)+v,2 -(v2 1e)l,2 

= ||m'~ (v)1l2l 1 + Ilel II M21 + I|r2(V)II1,2 + ie 11,2. 

Thus, we must minimize Ile' 112, + +le2 l2122 = Zm-l (el)2 + Z:M21 (ek)2 subject 
to the requirement that w E Go[n][m], or, first, for i = 1, 2, 

0= (yio(wi), w,0)iO = (2io(vm -ei) wS)1o 
m, m, 

= E bk (y1o (Bf ), W Sp? ) zo-: ek&(yio(Bk), o()iO for p = 1, ... , nio. 
k=l k=i 

So 
m, m, 

eek(iO(Bk), io0) = Z bk (yio (Bk) , )io 
k=1 k=l 

must hold. Let ai = Sk-l bk(yio(Bk) i a0)iO . 
We represent the second requirement as 

- Z(b' - e')(Y12(B1), C12)12 =- (bJ - e)(Y21 (BJ) w12)2 
k=1 j=1 
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or 

Zel (12(B), 212) - e- (Y21 (Bj2) w )1 2)21 
k=1 j=l 

= b'(Y2(B'), w1PI2 ) - Z bJ(2 (B ), w2) 
= k ( (k ),c91 2)12 E2 (Y2 1 (Bj2 ) )21 
k=l j=l 

Let 
12 mt2l2 a b Zb(Y&l2(B), wl12) 2- bj&2(Y21(Bj2) w2)21 

k=1 j=l 

We express these requirements in terms of matrices. Let ai denote 
i and a12 = (a 12 ,a). Put a _ (a' a12 a2). Let ei 

(el, ..., em,) and e _ (e1 e2), and M be the (nio + n12 + n2O) x (MnI + m2) 
array formed in the following fashion. Let Mio be the nio x mi array with 
rows 

((yio(Bi), C(i)io, (yio(Bi), C(i)io, (yio(Bi ) 
o 

C) 0io) 

M12 be the n12 x m1 array with rows 

((Y 12 (Bl) , 1(p)2 y22)) 1()2)2 
1 

Y2(m)XC)2)l 

and M21 be the n12 x m2 array with rows 

(-Y2 01), C)p212,-(Y21 (B2 0), () 212 ...,(Y21 (BM2 ) ' 0()2)1 ) 

Then M is the array 
Mio O 
M12 M21z 

0 M20, 

The requirement is MeT = aT. 
We proceed in a manner similar to the previous proof. We assume that 

m is sufficiently large so that the rows of M are independent. Form the 
(nIo + n12 + n20) x (nIo + n12 + n20) matrix A _ MMT . It is symmetric, nonsin- 
gular, and positive definite by the previous argument. Let y be the solution of 
yA = a, so y = aA-1 . The vector y has length (nlo + n12 + n2O). Represent y 
as (yl y12 y2), where y1 has length n1o, y12 has length nI2, and y2 has length 
n2o. Let z be the row vector of length (MI + M2) defined by 

z = yM = (ylM1o + y12M12 y12M21 + y2M20). 

As before, zzT = yM(yM)T = yAyT = a(aA-l)T = aA-laT and MzT = aT, so 
z is a possible e. 

The argument in the previous theorem shows that 

e = (e*e 2) = (ylMlo + y12M12 y12M21 + y2M2o) z 

defines a vector whose components minimize Zml (ek)2 + ZM,kl (ek2)2 = eeT 

subject to the necessary condition MeT = aT. The minimal value is zzT = 

aA 1 aT. As before, mn (v) IQ, = l - 1 (bk - ek)Bk , so 

liv - (v)ll-~H I I(v)ll, 1 + Ilel ll2 1 + 1l@,2(v)ll2,2 + Ile2l ,2 

11@1 (v)1, 211 2 + aA aT 
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To continue with the argument of the previous theorem, we must show that 
when the number of basis functions employed on each cell is increased to 
(mi, m'), the smallest eigenvalue of the resulting matrix A' is greater than 
or equal to the smallest eigenvalue ,u of A. The matrix of moment collocation 
rows M', when more basis functions are employed, is formed by augmenting 
the matrix M with additional entries so that it has the form 

/M1o M'o 0 0 
M'= M12 M12 M21 M21 J' 

0 0 M20 M20/ 
where, for example, M/ is a matrix whose rows are 

((Yio(Bi 10 1+ (p)oS(f(mi+2), C)j?)O , (yjO(B ' )j c)p i). 

We represent the matrix M' as the sum of two matrices M1 and M2 in the 
following fashion: 

(Mio 0 0 0\(0 Ml0 0 0 
M' =M1 +M2- M12 0 M21 0 1+1 0 M'5 0 M/1 

0 0 M20 O/\O 0 0 M/20 

We have M1MT = 0, and M1MT = A, so M/(M/)T = A + M2MT, and the 
analysis in the previous theorem establishes the result. 

Thus, 
n,O n12 n20 

aA-laT < 
(1/,L)aaT - (1//) (>1( k)2 + +Z(a2)2 

k=l k=1 k=1 

As in the previous lemma, 
m ~~~~~~~~00 

a = b'y jo(B'), w)0io Z bk(yio(B'), iO)io P= Lk\Ok' = - k' oP 
k=1 k=m,+l 

=-(YiO (m, (V)), w0)1p)iO, 

so 

(aP )2 ? 11Yio(@m, (v))|| Ol ll 2O < Cll ll i( V )l 111 io 112 

k=1 = 
00 00 

=12 b Z (Y12 (B ), 12 2) 12 + 2 
bJ2 (y2 1(B2) 1 2) 

k=m1+1 j=m2+1 

=(y12 (bl (VY)), (B), 12 + (y2 ( b (V 1 )) ( 1 2)21 

= (Y2 1 (2 ,(V)) - 1 2 ((v M (V)), 2) ) 12 0 

Schwarz's inequality and the trace theorem give 

(12)2 ? I221('n() - 12z(V))II1 2II12II2 (ap2) <||Y21 (eM2 (V))- Y12(@ml V)| 122 || 0()p 11 12 

? (IIy2i(@mv2(V))Iil2 + II212(@r (V))II12)2IIw) 12II2 

* 2(IY21(@mY2(M))2I12 + IIY12(@m (v))II12)IIw 2)12 

< 2(C21 21@ ((V)II,2 + C2 ,Il (v)11 21)11 1212 
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So 
nio n12 n20 

1>1 )2 + Z(a42)2 + 1>2)2 
k=i k=l k=i 

nlo 

+ (C12C IId'lf (V)112, 
+ 11 C (v)I? i)Ik0 

k=l1 
fl2O 
k=1 
n120 

= II2)1 ( 1@I2 (V) 11 2 H 2 2C)? 1)2II22 ur1k II, 1 \\ k2 + 12 k1 HkH12) 
k=l 

(22 fl2 \ 
k==lk= 

ni0 n12\ 

+ Ifll2(V)11,2 2C20 |3 + 2C111 E Ikok2H?2 
k=1 k=/ 

Thus, 

IV _- n(V)112 = jIdI (v)Ij2H1 + Hm2(v) ,2 + aA a 

? II I(V)II21i + Id'M2V )1I 2 + (1/u)aaT 
r ~~~ ~~nlo n12 \ 

? Id,1(V)II2 1I + (1/ji) (Cr20 _) 1|+ 2C20 12 2i6t) 11,2 

r ~~~ ~~n20 n12 \ 

+ IlI'M2(V)II,2 Ti + (1/i (c20 E + 2C E 42H12") k1 
L. ~~~~kIk=1 I 

If K2 is the maximum of the expressions in the brackets { }, we obtain the 
desired estimate 

||V - 3i4m(v)lli< K? (v)llI 1 + Il'rM2(V)l l,2) = Kj lj[m](V)112*. 

This result generalizes to prove Lemma 1.2. The following estimate holds: 
Suppose that n(Qi) is the total number of moment collocations employed on 

all interfaces Fij of cell Qi . Let n, = sup{n(Qj)} . Suppose that C = sup{C?j} 
and II1')pj 112X < W forall (ij);then K2 is boundedby 1+2(1/ut)C Wn,. Thus, 

|IV-3(V)IH < m1 +V2(1/L)CWc|<IId[m](V)IIH 

The argument above is based on the assumption that {Bk} is an orthonormal 
basis for HI (Qj) . The result holds for the more general case, since we have 
established the previous result in terms of m (v). Note that this shows that 
there is no particular advantage in choosing an orthonormal basis for HI (Qj) . 

In the case where the basis functions {Bk} are orthonormal in H1(Qj), 
,u is the smallest eigenvalue for the positive definite matrix MMT and this 
eigenvalue is nondecreasing as [m] increases. It is an open question whether 
or not there exist bases such that there is some C > 0 such that, for any 
choice of [n], there is a sufficiently large [m]([n]) so that ,u > C for [m'] > 
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[m]([n]). Using Legendre polynomials to both provide the weight functions 
{ tw/j} and generate a basis for a square in the manner described in ?4, we 
have computed 1 /, for at most 13 moments on each side of the square and 
have shown that if we make the number of basis functions m sufficiently large 
(m = 190 when eight moments are used), then 1 /,u < 337 . In our experiments, 
we typically use three or four moments and usually no more than 28 basis 
functions; in this case, 1 /, < 67. Our proof that the Lagrange multipliers A 
can be used to approximate the conormal derivative of the solution u on the 
Fij requires a similar assumption [20]. An example is presented in [6], where 
a good approximation to the conormal derivative is obtained using the values 
of the Lagrange multipliers. 

4. EXPERIMENTAL RESULTS 

We have written programs that produce approximations to solutions of prob- 
lems with domains in R2 [20]. We accommodate four types of cells. Cells can 
be parallelograms (type 4) or triangles (type 3) in any orientation. Two kinds 
of cells with one curved (external) boundary segment are accepted; the first has 
one straight side and one curved side (type 1); the second has two straight sides 
and one curved side (type 2). Typical cells are shown in Figure 1. 

Domains need not be simply connected and can have cracks. We treat Neu- 
mann problems and mixed problems as well as the Dirichlet problem; conver- 
gence of the approximations to the solution of the nonhomogeneous Dirichlet 
problem is shown in [20] as well as convergence of approximations to a Neu- 
mann and a mixed problem. The coefficients Aij(x) and Ao(x) need not be 
constant. 

In the first preprocessor stage of the program, the user describes the cells 
by indicating the corner points and the type of cell; FORTRAN formulas are 
entered giving the parametric representation for any curved boundary segments 
and the formulae for Aij, Ao, and f. 

The second part of the program determines which cells are adjacent and 
subdivides sides of a cell if necessary, for adjacent cells need not always share 
corner points. For example, a square can be decomposed into three cells, one 
rectangular and the other two square, so that the common boundary of the 
two square cells meets the rectangle in a "T". The program splits the internal 
boundary of the rectangle into two segments, one for each of the squares. 

TyRpe 4 cell TTya pe 2 

\ ~~~~~~~~~~cel 
\ . . ~~~~~~~~Type 3 

FIGURE 1. Typical cells 
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Legendre polynomials are used to generate a basis for a square, which pro- 
vides a basis for any parallelogram by the use of affine transformations. An 
interesting L2-orthonormal polynomial basis has been contrived for triangles. 
On the standard simplex, by use of symmetry considerations, we roughly halve 
the number of basis functions to be generated. Each basis function B(xl, x2) 
is either symmetric (so B(x1, x2) = B(x2, xI)), or B(x2, xI) is orthogonal to 
B(xl, x2) and provides a further basis function. These two bases are adapted 
for use in type-I and type-2 cells. 

Since we use polynomial bases, if a cell is a parallelogram or a triangle, 
Gaussian quadrature is appropriate for computing the entries a(B&, Bjk)k for 
the diagonal blocks in the matrix C [10]. In addition, if the Aij and Ao are 
constant, appropriate values for a representative square and triangle are stored 
and the affine transformations used to quickly generate the entries for all blocks 
in C corresponding to parallelogram or triangular cells. 

The quadrature required on the two types of cells with curved boundaries 
is the most time consuming part of the program, although such computations 
are done in parallel. For a type-I cell, we use an affine transformation to move 
the cell to fit inside the unit square so that the curved boundary is represented 
by a function. (Such a representation is required of type-i cells.) Gaussian 
quadrature is then used to integrate in the vertical direction. The upper limit 
representing the curved boundary segment may not be expressed by a polyno- 
mial, so we may not be able to depend on the special properties of Gaussian 
quadrature for accurate results when integrating in the horizontal direction. 
Thus an adaptive Romberg scheme is used to integrate in the horizontal di- 
rection; if the Romberg method fails to meet the convergence criteria set by 
the program, this fact is noted as the program is executed. It is then usually 
necessary to return to the preprocessor to further subdivide the cell giving the 
difficulty. A similar method is used for type-2 cells. More experimentation is 
needed to find a method that is faster and equally accurate. 

We use Legendre polynomials for the weight functions wi'J . The computa- 
tions for moment collocation take little time. They are done using Gaussian 
quadrature if an interface is a straight line; a variant of Simpson's rule is used 
to compute the moments on curved boundary segments. 

Two parameters are set by the user to determine the number of basis functions 
for each cell. Parameter "nmc" represents the number of moment collocations 
to be enforced on each interface; parameter "edf"' represents extra degrees of 
freedom so that on any cell Qi, the total number of basis functions is (number 
of sides Pjj for cell i) x nmc + edf. We typically set "nmc" equal to three 
or four and "edf" equal to about 12 for initial approximations. Our software 
currently generates up to 66 basis functions, giving a full tenth-order polynomial 
basis. The number of basis functions for type-I or -4 cells could be increased, 
for appropriate Gaussian quadrature is available. 

We have had no difficulty meeting the requirement that the rows of M be 
independent, using the bases and the weight functions described above. If the 
rows are dependent, the program informs the user; the parameter "edf" must 
then be increased. Such increases could be done without user intervention. In 
such a case, the new matrix is formed by expanding the original matrix; the 
entries in the entire matrix do not have to be recomputed. 

We use L2-orthogonal bases for parallelograms and triangles in an attempt to 
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provide good structure for the matrix. For parallelograms, if Aij and Ao are 
constant, there are many zeros off the diagonal in the symmetric blocks compris- 
ing C. Our experiments have been concerned with testing the implementation, 
using relatively small problems defined on domains with increasingly complex 
boundaries; the solution of the linear system has given no difficulties. We have 
not made any general survey of the conditioning of the system matrix. Large 
problems have been solved using the cell discretization method; for example, 
Greenstadt [14] has obtained approximate solutions to the diffusion equations 
of nuclear reactor theory. The model required as many as 3,800 equations to 
estimate solutions for three-dimensional problems. The system was solved us- 
ing the generalized conjugate gradient method of Concus, Golub, and O'Leary 
[7]. The results, when compared with solutions generated by other methods, are 
quite promising. 

Although ?3 shows that the system of equations has a unique solution for any 
choice of basis functions and weight functions (if [m] is sufficiently large), we 
expect that bases and weight functions for two- and three-dimensional problems 
should be chosen to be particularly "compatible", so that the matrix is well 
structured and convergence of approximations to the solution is rapid. For 
example, we might expect that if trigonometric functions are used for a basis on 
a cell, then trigonometric functions would also be appropriate for the moment 
collocation weight function. We refer to [14], where approximations to the 
lowest eigenvalue of Laplace's equation on the unit square are obtained using 
both polynomial and trigonometric bases. 

Once the system of linear equations is solved, we can generate the values of 
the approximation un,m at any point in the domain. For each interface, the 
L2(Fij) norm of the difference of the traces 

Yij (Un, m on cell i) and Yji(Un, m on cell j) 

on Fij is computed. If any of these are unacceptably high, the user can either 
increase "nmc" or return to the preprocessing stage to further subdivide the 
domain. Such subdivision of parallelograms or triangles could be done without 
user intervention. 

We discuss approximate solutions for two simple problems and compare the 
sizes of the linear systems used for our cell discretization method and the "Her- 
mite collocation" finite element method provided by our 1985 version of "ELL- 
PACK" [19]. The collocation method obtains Hermite bicubic piecewise poly- 
nomial approximations to a solution on rectangular domains. Both programs 
are run on a Sequent Symmetry machine. 

The first example, problem "C" in [ 19], is a Helmholtz problem with a bound- 
ary layer. We approximate the solution to 

Au-1 00u = 150 cosh(20y)/cosh(20). 

The domain is the unit square, with Dirichlet boundary data agreeing with 
the solution 

u(x, y) = cosh( lOx)/(2 cosh( 10)) + cosh(20y)/(2 cosh(20)). 

Figure 2 portrays a sketch of the solution. The maximum is 1. 
For our cell discretization approximation (CDA) to the solution, we use the 

entire unit square as our cell. In the table shown in Figure 3, we indicate the 
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order of the basis used in the CDA approximation, the number of basis functions 
(nbf), the number of moment collocations enforced (nmc), the number of linear 
equations used in the discretization (nle), and the maximum of the error (max) 
and the "L2" estimate of the error (L2). These are compared with solutions 
generated by ELLPACK's finite element collocation discretization module using 
grid sizes that produce similar maximum error. We list the size of the grid, the 
number of linear equations (nle), and the maximum error and the "L2" error. 
The errors are all estimated using ELLPACK's method, based on the points in 
a 41 x 41 grid. 

Figure 4 provides a log-log plot of the errors versus the number of equations 
used in both approximations. 

For our second example, we construct approximations to the homogeneous 
Dirichlet problem for Poisson's equation Au = f, with the formula for f 
obtained from the desired solution u(x, y) = -ey sin(lrx)sin(2ry). The domain 
is a square of side 2. A sketch of the solution is shown in Figure 5. The 
maximum is about 4.7. 

The number of Gauss points used in our implementation of the cell discretiza- 
tion method limits us to at most a 1 Oth-order basis for Poisson's equation. The 
maximum error when we use this basis and just one cell is 0.022; some results 
are shown in Figure 6. 

FIGURE 2. Solution of the first example 

CELL DISCRETIZATION METHOD ELLPACK'S BICUBIC F.E.M. 

ERRORS ERRORS 

Order nbf nmc nle max L2 grid nle max L2 

5 21 3 33 .049 .021 6x6 144 .045 .010 

6 28 3 40 .023 .010 7X7 194 .029 .007 

7 36 3 48 .010 .005 1OX1O 400 .010 A003 

8 45 4 61 .004 .002 13x13 676 .004 .0008 

9 55 3 67 .0018 .0017 17x17 1156 .0016 .0004 

FIGURE 3. Comparison of results for the first example 
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To obtain greater accuracy using the cell discretization method, we subdivide 
the domain into four square cells. Sample results are shown in Figure 7. 

Figure 8 provides a log-log plot of the errors versus the number of equations 
used in both approximations; both the one-cell case and the four-cell case are 
shown. 

- 1.0- 

a -15 K.+ Bicubic 
FE.A 

? -2.0 - + 

t \ 

\~~~~~~~~~~~~~~+ 
X -2.5 
E Cell 

Disc r e t ization \ + 

-~~ I I 
1.0 1.5 2.0 2.5 3.0 

Log(number of equations) 

FIGURE 4. Comparison of the max. error vs. number of 
equations for Example 1 

FIURE5 S-I 

._ 
_________,____________ I 

FIGURE 5. Solution of the second example 

CELL DISCRETIZATION METHOD ELLPACK'S BICUBIC F.E.M. 

ERRORS ERRORS 

Order nbf nmc nle max L2 grid nle max L2 

9 55 6 79 .050 .018 6x6 100 .052 .010 

10 66 6 90 .022 .009 7x7 144 .026 .005 

FIGURE 6. Results for the second example using one cell 
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In these tests there is a strong linear relation between the logarithms of the 
errors and the number of equations for both methods (Irl > 0.99). 

Note that in both examples, although the maximum errors are similar in 
the cases cited above, the L2 errors for the bicubic finite element collocation 
method are less than the L2 errors for the cell discretization method in each 
case. 

The two examples suggest that the number of equations necessary to ob- 
tain good accuracy in many applications is similar for both methods. If higher 
accuracy is desired, it appears that fewer equations are required for the cell dis- 
cretization method than for the collocation finite element method. The matrix 
representing the linear system for the Hermite collocation method is banded. 
The structure of the symmetric matrix generated by the cell discretization algo- 
rithm is described in ?3. The band width of the array C of diagonal blocks is 
about the same size as the band width of the collocation method for approxi- 
mations producing similar maximum error. 

The second example illustrates the two ways that can be used to increase the 
accuracy of approximations using the cell discretization algorithm. The most 
efficient method is to increase the number of basis functions and the number of 

CELL DISCRETIZATION METHOD ELLPACK'S BICUBIC F.E.M. 

ERRORS ERRORS 

Order nbf nmc nle max L2 grid nle max L2 

6 28 4 160 .056 .009 6x6 100 .052 .010 

7 36 5 204 .0058 .0017 1Ox1O 324 .0052 .0010 

8 45 6 252 .0013 .0004 13x13 576 .0015 .0003 

9 55 7 304 .00012 .00003 24x24 2116 .00012 .00002 

FIGURE 7. Results for the second example using four cells 
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FIGURE 8. Comparison of the max. error vs. number of 
equations for Example 2 



76 HOWARD SWANN 

moment collocations enforced. The size of the linear system increases relatively 
slowly and the entries in the matrix are just augmented; the entire matrix does 
not have to be recomputed to obtain improvement. However, in our implemen- 
tation, the methods of quadrature limit the number of basis functions that can 
be used in this procedure, particularly if the Aij and Ao are not constant. 

The second method for increasing accuracy is to increase the number of cells. 
This is more difficult to implement than the first method and may substantially 
increase the number of linear equations in the discretization if all cells in a first 
approximation are subdivided. It may be appropriate to first identify the areas 
of the domain where the errors are largest and just refine the cells in such areas. 
The program reports the L2-norm of the match-up of approximations across 
interfaces to help identify areas of the domain where the approximation is poor. 
An example of this procedure can be found in [16]. Good approximations can 
then be obtained using fewer basis functions on each cell. In [ 14], experiments 
were made to determine the effect of mesh refinement on the accuracy of ap- 
proximations to the solution in two simple problems. The domain in the first 
problem in the study in [ 14] is a square. For a fixed number of basis functions 
employed on each cell and a fixed number of moment collocations, the error of 
the approximation on the boundary of the domain was roughly proportional to 
the 4th power of h, the length of the side of square cells of equal size. This 
proportionality to the 4th power of h did not hold in the second problem de- 
fined on an L-shaped domain (see [14] for an interesting conjecture concerning 
this result). 

We hope that the results cited above will encourage interest in the cell dis- 
cretization method. It is fairly easy to implement and allows great flexibility in 
the choice of basis functions and domain decomposition. 

Some of the drawbacks and unresolved questions concerning the cell dis- 
cretization method are the following: 

1. The implementation discussed above requires that a user provide a de- 
scription of the decomposition of the domain into cells of appropriate type. 
Is there a way to automate an appropriate decomposition, starting, for exam- 
ple, from the description of an irregular domain provided by the ELLPACK 
definition of a problem? 

2. If the coefficients of the equations are not constant, or we have chosen 
cells with curved boundaries, the required quadrature is time consuming. 

3. We have described a general implementation of the method using polyno- 
mial bases. This could be extended to accommodate other bases that may be 
particularly appropriate for certain problems (see [5]). 

4. No systematic study of the conditioning of the system matrix for large 
problems has been made. 

5. The method has yet to be implemented to solve general problems in three 
dimensions. 

6. What is the trade-off between the number of moment collocations em- 
ployed and the total number of basis functions used on any cell? We have as 
yet only the sorts of empirical results indicated in the examples discussed above. 

7. The errors are expressed in terms of projections in HI (i2i) or L2(Fi) 
onto the orthogonal complement of the span of a finite number of chosen basis 
functions. Methods of approximation theory should enable us to characterize 
such errors in terms of the size of the cell and the properties of various bases, 
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e.g., degree of a polynomial approximation or number of trigonometric func- 
tions utilized. 

8. In [16], Greenstadt extends the method to non-self-adjoint problems, using 
a primal-dual variational approach as the basis for the discretization process. 
Two examples of approximations to the solution of convection-diffusion prob- 
lems are given. The convergence and error results described in this paper have 
not been extended to the non-self-adjoint case. 
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